Noname manuscript No.
(will be inserted by the editor)

Improving the Availability of Supercomputer Job Input Data Using Temporal Replication

Chao Wang - Zhe Zhang - Xiaosong Ma - Sudharshan S. Vazhkudai- Frank Mueller

Received: / Accepted:

read input data and write output/checkpoint data to the sec-

Abstract Storage §ystems n supercomputgrs are a majoJndary storage, which is usually supported through a high-
reason for service interruptions. RAID solutions alone-can

not provide sufficient protection as 1) growing average dis‘{)erf_or_mance parallel fil_e system. Jobs are interrupted-or re
. . . un if input/output data is unavailable or lost.

recovery times make RAID groups increasingly vulnerable _

to disk failures during reconstruction, and 2) RAID does not ~ Storage systems have been shown to consistently rank

help with higher-level faults such failed I/O nodes. as the primary source of system failures, accordlng'to logs
This paper presents a complementary approach based qum Iarge-scalg paraIIe.I computers and comm'erC|aI dgta

the observation that files in the supercomputerscratcl'&spa(‘f,er,1ters [1,1]' This trgnd is only expected to continue as in-

are typically accessed by batch jobs whose execution cafjvidual disk bandwidth grows much slower than the over-

be anticipated. Therefore, we propose to transparently, s& SUPercomputer capacity. Therefore, the number of disk

lectively, and temporarily replicate "active” job input tda drives used in a supercomputer YVI|| nee_d to increase faster

by coordinating the parallel file system with the batch jobt"an the overall system size. It is predicted that by 2018,

scheduler. We have implemented the temporal replicatioft SYStem at the top of the top500.org chart will have more

scheme in the popular Lustre parallel file system and evaf—han 800,000 disk drives with around 25,000 disk failures

uated it with real-cluster experiments. Our results shat th per year [18].

the scheme allows for fast online data reconstruction, aith Currently, the majority of disk failures are masked by

reasonably low overall space and 1/0 bandwidth overhead.hardware solutions such as RAID [15]. However, it is be-
coming increasingly difficult for common RAID configura-

Keywords Temporal Replication Batch Job Scheduler  tions to hide disk failures as disk capacity is expectedoogr

Reliability - SupercomputerParallel File System by 50% each year, which increases the reconstruction time.
_ The reconstruction time is further prolonged by the “pdlite
1 Introduction policy adopted by RAID systems to make reconstruction

Coping with failures is a key issue to address as we scale ¥€ld t0 application requests. This causes a RAID group to
Peta- and Exa-flop supercomputers. The reliability and ud2€ more vulnerable to additional disk failures during recon

ability of these machines rely primarily on the storage sysStruction [18].

tems providing the scratch space. Almost all jobs need to According to recent studies [12], disk failures are only
part of the sources causing data unavailability in storgge s
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as Lustre [6], provide storage node failover mechanisms, ourable 1 Configurations of top five supercomputers as of 06/2@0

experience with Jaguar again shows that this configuratign System 7 Agor | Scratch | Memory | Top
might conflict with other system settings. Further, many sut Cores | egate | Space to 500
. . . . Memory (TB) Storage | Rank
percomputing centers hesitate to spend their operatiats bu (TB) Ratio
geton replicating I/0O servers and instead of purchasinggmolf_RoadRunner(LANL) [ 122400 98 2048 1.8% 1
FLOPS BlueGene/L(LLNL) 106496 73.7 1900 3.8% 2
e ) ) ) ) ) BlueGene/P(Argonne) | 163840 80 1126 7.1% 3
Figure 1 gives an overview of an event timeline describ Ranger(TACC) 62976 123 1802 6.83 4
. . . . , . J ORNL 23412 46.8 600 7.8 5
ing a typical supercomputing job’s data life-cycle. Userg—2294afORNL) 0

stage their job input data from elsewhere to the scratchespac

submit their jobs using a batch script, and offload the OUtpUf, , ;t data staging alongside computation [28]. We have also
files to archival systems or local clusters. For better spéee implemented a replication-triggering algorithm that atier

lization, the scratch space does not enforce quotas buepurg, e with the job scheduler to delay the replica creatisa. U

files after a number of days since the last access. MOreovep, 1his approach, we ensure that the replication completes
job input files are often read-only (also read-once) and outy, time to have an extra copy of the job input data before its
put files are write-once. execution.

Althou_gh m.ost supercompgtmg prs performing nu- We then evaluate the performance by conducting real-
_menca_\l S|mulat_|ons are output_-mtg_nswe rather than tnpu cluster experiments that assess the overhead and sdglabili
mtgnsw_e, the mput Qata avallab_|llty problem poses__tvvoof the replication-based data recovery process. Our experi
UNIQUE ISSUES. First, input operations are more SeNSOIVe o nis indicate that replication and data recovery can be per
server fa_|lures. Output (_jata can_be easily redlr_ected 0 SUformed quite efficiently. Thus, our approach presents alnove
vive runtime storage failures usirgnger offloading[14]. way to bridge the gap between parallel file systems and job

’/'.\S mentioned earher_, many sygtems 'I|ke Jaguar do not havsechedulers, thereby enabling us to strike a balance between
file system server failover configurations to protect adains, \ \ipc center resource consumption and serviceability.
input data unavailability. In contrast, during the outptdp

cess, parallel file systems can more easily skip failed serve
in striping a new file or perform restriping if necessary. Sec 2 Temporal Replication Design
ond, loss of input data often brings heavier penalty. Output
files already written can typically withstand temporary 1/0 Supercomputers are heavily utilized. Most jobs spend sig-
server failures or RAID reconstruction delays as job ownergificantly more time waiting in the batch queue than actually
have days to perform their stage-out task before the files agxecuting. The popularity of a new system ramps up as it
purged from the scratch space. Input data unavailability, 0goes towards its prime time. For example, from the 3-year
the other hand, incurs job termination and resubmissiois. ThJaguar job logs, the average job wait-time:run-time rato i
introduces high costs for job re-queuing, typically ordgrs creases from 0.94 in 2005, to 2.86 in 2006, and 3.84 in 2007.
magnitude larger than the input 1/O time itself.

Fortunately, unlike'g_eneral-purpose systems, in SUPeLs 1 3 stification and Design Rationale
computers we can anticipatieture data accesses by check-

ing the job scheduling status. For example, a compute job iﬁ key concern about the feasibility of temporal replication

only able to read its input data during its execution. By CO5g e potential space and I/O overhead replication might

ordinating with the job scheduler, a supercomputer storagg . . However, we argue that by replicating selected “ac-

system cgn selectively_provide _additional protection daty tive files” during their “active periods”, we are only repli-
the duration when the job data is expected to be accessed.cating a small fraction of the files residing in the scratch

Contributions: In this paper, we proposemporalfile repli- 5506 4t any given time. To estimate the extra space require-

cation, wherein a parallel file system performs transparen;nent we examined the sizes of the aggregate memory space
and temporary replication of job input data. This faciB®t g the scratch space on state-of-the-art supercomputers.
fast and easy file reconstruction before and during a job’s €XThe premise is that with today’s massively parallel machine
ecution without additional user hints or application medifi and with the increasing performance gap between memory
cations. pnlike traditiopal file replication techniquedjieh and disk accesses, batch applications are seldom outref-co
have mainly been designed to improve long-term data pefyg a5 agrees with our observed memory use pattern on
sistence and access bandwidth or to lower access Iate”%guar (see below). Parallel codes typically perform iraput
the temporal replication scheme targets the enhancement gf, beginning of a run to initialize the simulation or to réad
short-term data availability centered around job exeaistio databases for parallel queries. Therefore, the aggregate m

In supercomputers. ory size gives a bound for the total input data size of active

We have implemented our scheme in the popular Lusjopg gy comparing this estimate with the scratch space size
tre parallel file system and combined it with the Moab job

= ) e~ WPwe can assess the relative overhead of temporal replication
scheduler by building on our previous work on coinciding
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Table 1 summarizes such information for the top five suin supercomputer configurations and job behavior. First, as
percomputers [22]. We see that the memory-to-storage ratimentioned earlier, Table 1 shows that the memory to scratch
is less than 8%. Detailed job logs with per-job peak memorgpace ratio of the top 5 supercomputers is relatively low: Se
usage indicate that the above approximation of using the agnd, it is rather rare for parallel jobs on these machines to
gregate memory size significantly overestimates the actudlilly consume the available physical memory on each node.
memory use (discussed later in this subsection). While th& job may complete in shorter time on a larger number of
memory-to-storage ratio provides a rough estimation of th@odes due to the division of workload and data, resulting in
replication overhead, in reality, however, a number of bthelower per-node memory requirements at a comparable time-
factors need to be considered. First, when analyzing tiie stonode charge. Figure 2 shows the per-node memory usage of
age space overhead, queued jobs’ input files cannot be ipothrunningandqueuedobs over one month on the ORNL
nored, since their aggregate size can be even larger thian tRaguar system. It backs our hypothesis that jobs tend te be in
of running jobs. In the following sections, we propose addi-core, with their aggregate peak memory usage providing an
tional optimizations to shorten the lifespan of replicascS upper bound for their total input size. We also found the ac-
ond, when analyzing the bandwidth overhead, the frequendyal aggregate memory usage averaged over the 300 sample
of replication should be taken into account. Jaguar’s jgislo points to be significantly below the total amount of memory
show an average job run time of around 1000 seconds and awailable shown in Table 1: 31.8 GB for running jobs and
average aggregate memory usage of 31.8 GB, which leads 4®.5 GB for queued jobs.

a bandwidth consumption of less than 0.1% of Jaguar’s total
capacity of 284 GBY/s. For this reason, we primarily focus o
the space overhead in the following discussions.

Next, we discuss a supercomputer's usage scenarios agdsed on the above observations about job wait times and
configuration in more detail to justify the use of replicatio qst/penefit trade-offs for replication in storage space, w
to improve job input data availability. propose the following design of an HPC-centric file repli-

Even though replication is a widely used approach incation mechanism.
many distributed file system implementations, it is seldom  \When jobs spend a significant amount of time waiting,
adopted in supercomputer storage systems. In fact, mangplicating their input files (either at stage-in or subriaiss
popular high-performance parallel file systems (e.g., Lustime) wastes storage space. Instead, a parallel file system ¢
tre and PVFS) do not even support replication, mainly dugbtain the current queue status and determineptication
to space concerns. The capacity of the scratch space is iffigger pointto create replicas for a given job. The premise
portant in (1) allowing job files to remain for a reasonablenere is to have enough jobs near the top of the queue, stocked
amount of time (days rather than hours), avoiding the loss qfip with their replicas, such that jobs dispatched next will
precious job input/output data, and (2) allowing giant 4fer haye extra input data redundancy. Additional replicatidlh w
jobs to have enough space to generate their output. Blindlge triggered by job completion events, which usually result
replicating all files, even just once, would reduce the eﬁeCin the dispatch of one or more jobs from the queue. Since
tive scratch capacity to half of its original size. jobs are seldom interdependent, we expect that supplement-

Temporal replication addresses the above concern bing a modest prefix of the queued jobs with a second replica
leveraging job execution information from the batch schedof their input will be sufficient. Only one copy of a job’s in-
uler. This allows it to only replicate a small fraction of “ac put data will be available before its replication triggeirgo
tive files” in the scratch space by letting the “replicatiomw However, this primary copy can be protected with periodic
dow” slide as jobs flow through the batch queue. Tempoavailability checks and remote data recovery techniques pr
ral replication is further motivated by several ongoingntie  viously developed and deployed by us [28].

n2.2 Delayed Replica Creation



Completion of a large job is challenging as it can activate ~ * ‘ ‘ ‘ ‘ e
many waiting jobs requiring instant replication of mulépl et ]
datasets. As a solution, we propose to query the queue stat
from the job scheduler. Let the replication window, be
the length of the prefix of jobs at the head of the queue tha
should have their replicas ready. should be the smallest
integer such that:

VaMB)

Amoufitrof memor
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w Sample points
Z |Qi| > max(R,aS), Fig. 2 Per-node memory usage from 300 uniformly sampled time
i=0 points over a 30-day period based on job logs from the ORNL
Jaguar system. For each time point, the total memory usage the
where |Q;| is the number of nodes requested by tlle  sum of peak memory used by all jobs in question.

ranked job in the queu&? is the number of nodes used by

the largest running jolf is the total number of nodes in the o[ es]s]7]s[o]o[u]m]n]u]s]
system, and the facter(0 < «) is a controllable parameter File Size = 16MB, Stripe Count = 4, Stripe Size = IMB
to determine the eagerness of replication. OSTO OST1 OST2 OST3 OST4 OST5 OST6 OST7 OST8
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One problem with the above approach is that job queues E 1
are quite dynamic as strategies such as backfilling are typi- 5
cally used with an FCFS or FCFS-with-priority scheduling o | .
policy. Therefore, jobs do not necessarily stay in the queue
in their arrival order. In particular, jobs that require aan o
number of nodes are likely to move ahead faster. To ad-
dress this, we augment the above replication window selec- ™>* ™
tion with a “shortcut’ approach and define a threshdld O“g(‘f‘:)f)F e[ objo, 1,2,3 | Oﬁg(if';ff“e
0 < T < 1. Jobs that reque&t - S nodes will have their Replica (fod) Replica (foo') m
input data replicated immediately regardless of the curren

replica window. This approach allows iobs that tend to bé:ig. 3 Objects of an original job input file and its replica. A failure
[:1 duled quickl pp | i J . occurred to OST1, which caused accesses to the affected atijéo
scheduled quickly to enjoy early replica creation. be redirected to their replicas on OST5, with replica regeneation

on OSTS8.
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2.3 Eager Replica Removal

We can also shorten the replicas’ life span by removing th&89¢ Servers (OSS). Each OSS can host severaI_Object Stor-
Lpge Targets (OST) that manage the storage devices. All our

extra copy once we know it is not needed. A relatively saf Sificati de withi dd & h
approach is to perform the removal at job completion timeModifications were made within Lustre and do not affect the

Although users sometimes submit additional jobs using tthdSIX file system APIs. Therefgrel, data replication, fagl{lov
same input data, the primary data copy will again be progn recovery processes are entirely transparent to uskr app

tected with our offline availability check and recovery [28] cations.
Further, subsequent jobs will also trigger replicationheesy/t
progress toward the head of the job queue.

Overall, we recognize that the input files for most in- 3.1 Replica Management Services
core parallel jobs are read at the beginning of job execu-
tion and never re-accessed thereafter. Hence, we have dg-our implementation, a supercomputer’s head node dou-
signed aneager replica removastrategy that removes the ples as a replica management service node, running as a
extra replica once the replicated file has been closed by theystre client. Job input data is usually staged via the head
application. This significantly shortens the replicatiamat  node making it well suited for initiating replication oper-
tion, especially for long-running jobs. Such an aggressive  ations. Replica management involves generating a copy of
moval policy may subject input files to a higher risk in the the input dataset at the appropriate replication triggéntpo
rare case of a subsequent access further down in its execstheduling periodic failure detection before job exeautio
tion. However, we argue that reduced space requirements fafhd also scheduling data recovery in response to reconstruc

the more common case outweigh this risk. tion requests. Data reconstruction requests are initiayed
the compute nodes when they observe storage failures dur-
3 Implementation Issues ing file accesses. The replica manager serves as a coordina-

tor that facilitates file reorganization, replica recouastion,
A Lustre [6] file system comprises of three key compo-and streamlining of requests from the compute nodes in a
nents: clients, a MetaData Server (MDS), and Object Stomon-redundant fashion.
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Replica Creation and Management:We use the copy OST despite multiple such requests from different compute

mechanism of the underlying file system to generate a replicaodes. We have implemented a centralized coordinator in-

of the original file. In creating the replica, we ensure that i side the replica manager to handle the requests in a non-

inherits the striping pattern of the original file and is dis-redundant fashion.

tributed on /O nodes disjoint from the original file’s /O

nodes. As depicted in Figure 3, the objects of the originaB.2 Coordination with Job Scheduler

file and the replica form pairs (objects, 0), (1, 1), etc.).

The replica is associated with the original file for its lileeé  As we discussed in Sections 1 and 2, our temporal replication

by utilizing Lustre’s extended attribute mechanism. mechanism is required to be coordinated with the batch job
scheduler to achieve selective protection for “active’adét

Failure Detection: For persistent data availability, we per- our target framework, batch jobs are submitted submis-
form periodic failure detection before a job’s executiohisT ~ Sion managethat parses the scripts, recognizes and records
offline failure detection mechanism was described in our preinput data sets for each job, and creates correspondinig repl
vious work [28]. The same mechanism has been extended f§ation operations at the appropriate time.
transparent storage failure detection and access reidinect 10 this end, we leverage our previous work [28] that au-
during a job run. Both I/0 node failures and disk failured wil tomatically separates out data staging and compute jobs fro
result in an 1/O error immediately within our Lustre patched@ batch script and schedules them by submitting these jobs to
VFS system calls. Upon capturing the 1/0 error in the sysSeparate queues (“dataxfer” and “batch”) for better cdntro
tem function, Lustre obtains the file name and the index off his enables us to coordinate data staging alongside com-
the failed OST. Such information is then sent by the client tutation by setting up dependencies such that the compute
the head node, which, in turn, initiates the object reozgni Job only commences after the data staging finishes. The data
tion and replica reconstruction procedures. operation itself is specified in the PBS job script as follows
using a special “STAGEIN” directive:

Obiject Failover and Replica Regeneration: Upon an 1/O #STAGEIN hsi -q -A keytab -k oigytabfile - user

node failure, either detected by the periodic offline chetk o :/%/et / Scrt""tdgu:ﬁ_” des“”itig'ﬁ'e : T{_’ume" .
by a compute node through an I/O error, the aforementioned € exten IS work Dy setling up a separate queue,

file and failure information is sent to the head node. Using ReplicaQueue”, that accepts replication jobs. We have als

several new commands that we have developed, the rep”é@plemented aeplication daemorthat determines “what

manager will query the MDS to identify the appropriate Ob_and when to replicate”. The replication daemon creates a

jects in the replica file that can be used to fill the holes innew replication job in the ReplicaQueue so that it completes

the original file. The original file’s metadata is updated-sub In time for the job to have another copy of the data when it

sequently to integrate the replicated objects into theimaig

is ready to run. The daemon periodically monitors the batch
file for seamless data access failover. Since metadata&mdag

ueue status using thgstattool and executes the delayed
are inexpensive, the head node is not expected to becomd lica creation algorithm described in Section 2.2. These
potential bottleneck.

strategies enable the coordination between the job schedul
To maintain the desired data redundancy during the pe"’-md the stqrage system, WhiCh allows data replicgtio,n qnly

riod that a file is replicated, we choose to create a “secgnda or the desired window during the corresponding job’s life

replica” on another OST for the failover objects after a-storCyCIe On & supercomputer.

age failure. The procedure begins by locating another OST, _

giving priority to one that currently does not store any pért 4 Experimental Results

the original or the primary replica fifeThen, the failover ob- | h | replicat h ‘ d
jects are copied to the chosen OST and in turn integrated ingl evaluate the temporal replication scheme, we performe

the primary replica file. Since the replica acts as a backup, [eal-cluster experiments. We assessed our implementzftion

is not urgent to populate its data immediately. In our imple_tenjporal replication in t_h(_e Lustre file system in terms of the
mentation, such stripe-wise replication is delayed by 5 seconIIne data recovery efficiency.

onds (tunable) and is offloaded to 1/0 nodes (OSSs).
4.1 Experimental Framework

Streamlining Rep!ica Regeneration RequestsD_ue to Our testbed comprised a 17-node Linux cluster at NCSU.
parallel 1/0 , multiple compute nodes (Lustre clients) arér o nodes were 2-way SMPs, each with four AMD Opteron

likely to access a shared file concurrently. Therefore, @& th é'm GHz cores and 2 GBs of memory, connected by a Giga-

case of a storage failure, we must ensure that the head no & Ethernet switch. The OS used was Fedora Core 5 Linux
issues a single failover/regeneration request per file and Px86.64 with Lustre 1.6.3. The cluster nodes were setup as

L In Lustre, file is striped across 4 OSTs by default. Sincemupe- /O Servers, compute nodes (Lustre clients), or both, as dis
puters typically have hundreds of OSTs, an OST can be easihydf cussed later.
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4.2 Failure Detection and Offline Recovery g y P

As mentioned in Section 3.1, before a job begins to run, W, jeq from 128MB to 2GB by adjusting. We configured
periodically chec_k for fall_ures on OSTs that carry its inputg 5gTs (1 OST/OSS), with the original file residing on 4
data. The detection cost is less than 0.1 seconds as the NUBs T the replica on another 4, and the reconstruction of the
ber of OSTs increases to 256 (16 OSTs on each of the 16jjqyer object occurring on the remaining one. Limited by

OSSs) in our testbed. Since failure detection is performe,, o|,ster size, we let nodes double as both 1/0 and compute
when a job is waiting, it incurs no overhead on job execlyodes.

tion itself. When an OST failure is detected, two steps are , . : .
: . : . ) To simulate random storage failures, we varied the point
performed to recover the file from its replica: object fagov . .. . W N .
in time where a failure occurs. In “up-front”, an OSTSs fadur

_and rephca reconstruction. The overhead of object fariovewas induced right before the MPI job started running. Hence,
is relatively constant (0.84-0.89 seconds) regardlessi®f t . e
L o the master process experienced an I/O error upon its first dat
number of OSTs and the file size. This is due to the fact that : R ” .
. . . .~.access to the failed OST. With “mid-way”, one OST failure
the operation only involves the MDS and the client that ini- : . . .
was induced mid-way during the input process. The master

tiates the command. Figure 4 shows the replica recons‘truce'ncountered the I/O error amidst its reading and sent a fecov

tion (RR) cost with different file sizes. The test setup con—ery request to the replica manager on the head node. Figure 5
sisted of 16 OSTs (1 OST/OSS). We varied the file size from_~. S g ’
. . indicates that the application-visible recovery overhead
128MB to 2GB. With one OST failure, the data to recover : .
. . . . almost constant for all cases (right around 1 second) censid
ranges from 8MB to 128MB causing a linear increase in RRering system variances. This occurs because only one object
overhead. Figure 4 also shows thattteole file reconstruc- '

. . . was replaced for all test cases while only one process was
tion (WFR) the conventional alternative to our more selec- o M
ngaged in input. Even though the replication reconstruc-

tive scheme where the entire file is re-copied, has a mucF

. . . ion cost rises as the file size increases, this was hiddem fro
higher overhead. In addition, RR cost increases as the chun|}1< - L . .

. . . the application. The application simply progressed with th
size decreases due to the increased fragmentation of data

ilover object from the replica while the replica itself sva
cesses. . .
replenished in the background.

4.3 Online Recovery
4.3.1 Application 1: Matrix Multiplication (MM) 4.3.2 Application 2: mpiBLAST

To measure on-the-fly data recovery overhead during a joo evaluate the data recovery overhead using temporai repli
run with temporal replication, we used MM, an MPI kernel cation with a read-intensive application, we tested with-mp
that performs dense matrix multiplication. It computes theBLAST [8], which splits a database into fragments and per-
standard”’ = A x B operation, wherel, B andC arenxn  formsaBLAST search on the worker nodes in parallel. Since
matrices.A and B are stored contiguously in an input file. mpiBLAST is more input-intensive, we examined the impact
We varyn to manipulate the problem size. Like in many ap-of a storage failure on its overall performance. The differ-
plications, only one master process reads the input file, theence between the job execution times with and without fail-
broadcasts the data to all the other processes for parallel m ure, i.e., the recovery overhead, is shown in Figure 6. Since
tiplication using a BLOCK distribution. mMpiBLAST assigns one process as the master and another to

Figure 5 depicts the MM recovery overhead with differ- perform file output, the number of actual worker processes
ent problem sizes. Here, the MPI job ran on 16 computgerforming parallel input is the total process number minus
nodes, each with one MPI process. The total input size watsvo.
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12 However, supercomputer storage systems host transient job
[ up-front recovery overhead data, where “unaccessed” job input files are often more im-
10 — _ “ " . L
B mid-way recovery overhead portant than “accessed” ones. In addition, such optinonati

cannot cope with failures beyond RAID’s protection at the
hardware level.

£ 6

li Replication: Data replication creates and stores redundant

g 4t copies (eplicag of datasets. Various replication techniques

3 have been studied [3,7,19,25] in many distributed file sys-
27 tems [4,9,13]. Most existing replication techniques tadht

datasets with equal importance and each dataset with,static
0 time-invariant importance when making replication deci-
13) 2(4) 4(6) 8(10) 14(16)

sions. An intuitive improvement would be to treat datasets
with different priorities. To this end, BAD-FS [2] performs

Fig. 6 Recovery overhead of mpiBLAST selective replication according to a cost-benefit analysis
based on the replication costs and the system failure rate.

The Lustre configurations and failure modes used in th&imilar to BAD-FS, our approach also makes on-demand
tests were similar to those in the MM tests. Overall, the imreplication decisions. However, our scheme is more “aecess
pact of data recovery on the application’s performance wagware” rather than “cost-aware”. While BAD-FS still cre-
small. As the number of workers grew, the database wagtes static replicas, our approach utilizes explicit infaf
partitioned into more files. Hence, more files resided on th&on from the job scheduler to closely synchronize and limit
failed OST and needed recovery. As shown by Figure 6, théeplication to jobs in execution or soon to be executed.
recovery overhead grew with the number of workers. Since
each worker process performed input at its own pace and tHerasure coding: Another widely investigated technique is
input files were randomly distributed to the OSTSs, the I/Oerasure coding [5,16,26]. With erasure codikgparity
errors captured on the worker processes occurred at differeblocks are encoded into blocks of source data. When a
times. Hence, the respective recovery requests to the he&ilure occurs, the whole set of + £ blocks of data can be
node were not issued synchronously in parallel but rather ifeconstructed with any surviving blocks through decoding.

a staged fashion. With many applications that access a fixed Erasure coding reduces the space usage of replication but
number of shared input files, we expect to see a much mo@dds computational overhead for data encoding/decoding.
scalable recovery cost with regard to the number of MPI protn [24], the authors provide a theoretical comparison be-

Number of workers (number of computer nodes)

cesses using our techniques. tween replication and erasure coding. In many systems, era-
Related Work sure coding provides better overall performance balancing
5 Related Wor computation costs and space usage. However, for supercom-

RAID recovery: Disk failures can often be masked by stan-puter centers, its computation costs will be a concern. This
dard RAID technigues [15]. However, RAID is geared to-is because computing time in supercomputers is a precious
ward whole disk failures and does not address sector-levebmmodity. At the same time, our data analysis suggests that
faults [1,10,17]. It is further impaired by controller farfes  the amount of storage space required to replicate data for
and multiple disk failures within the same group. Withoutactive jobs is relatively small compared to the total sterag
hot spares, reconstruction requires manual interventigin a footprint. Therefore, compared to erasure coding, our ap-
is time consuming. With RAID reconstruction, disk arraysproach is more suitable for supercomputing environments,
either run in a degraded (not yielding to other 1/O requestsyvhich is verified by our experimental study.
or polite mode. In a degraded mode, busy disk arrays suffer
a substantial performance hit when crippled with multipleRemote reconstruction: Some of our previous studies
failed disks [27,20]. This degradation is even more signifi{23,28] investigated approaches for reconstructing mggssi
cant on parallel file systems as files are striped over maltiplpieces of datasets from data sources where the job input
disk arrays and large sequential accesses are common. Wiata was originally staged from. We have shown in [28]
der a polite mode, with rapidly growing disk capacity, thethat supercomputing centers’ data availability can betdras
total reconstruction time is projected to increase to daps s cally enhanced by periodically checking and reconstrgctin
jecting a disk array to additional failures [18]. Our approa datasets for queued jobs while the reconstruction oveghead
complements RAID systems by providing fast recovery proare barely visible to users.
tecting against non-disk and multiple disk failures. Both remote patching and temporal replication will be
Recent work on popularity-based RAID reconstruc-able to help with storage failures at multiple layers. Whie
tion [21] rebuilds more frequently accessed data firstgber mote patching poses no additional space overhead, the-patch
reducing reconstruction time and user-perceived pesaltieing costs depend on the data source and the end-to-end net-
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work transfer performance. It may be hard to hide them from
applications during a job’s execution. Temporal replizati

on the other hand, trades space (which is relatively chea]ps'

at supercomputers) for performance. It provides high-dpee
data recovery and reduces the space overhead by only repli-
cating the data when it is needed. Our optimizations pre-
sented in this paper aim at further controlling and lowerin
the space consumption of replicas.

15.

6 Conclusion

In this paper, we have presented a novel temporal replicas.

tion scheme for supercomputer job data. By creating addi-
tional data redundancy for transient job input data and-coor
dinating the job scheduler and the parallel file system, we,
allow fast online data recovery from local replicas with-
out user intervention or hardware support. This general-
purpose, high-level data replication can help avoid job fai
ures/resubmission by reducing the impact of both disk faiI-1
ures or software/hardware failures on the storage nodes. Ou

implementation, using the widely used Lustre parallel file19.

system and the Moab scheduler, demonstrates that replica-
tion and data recovery can be performed efficiently.
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